Министерство науки и высшего образования РФ ФГБОУ ВО «Ульяновский государственный университет» Институт открытого образования Современный открытый колледж СОКОЛ

ЗУБКОВА М. Л.

МАТЕМАТИКА

методические рекомендации

для семинарских (практических) занятий и самостоятельной работы студентов по специальности 40.02.01 «Право и организация социального обеспечения» (среднее профессиональное образование)

Ульяновск

2023

Форма 1 из 16

Математика: методические рекомендации для семинарских (практических) занятий и самостоятельной работы студентов по специальности 40.02.01 «Право и организация социального обеспечения» (среднее профессиональное образование) / Составитель Зубкова М. Л.: УлГУ. Институт открытого образования. – Ульяновск, 2023. – 16 с.

Составитель: преподаватель Современного открытого колледжа «СОКОЛ» Зубкова М. Л.

Методические рекомендации рекомендованы к введению в образовательный процесс решением УМС ИОО (Протокол № 178 от 27.06.2023г.).

Форма 2 из 16

СОДЕРЖАНИЕ

1.	ОБЩИЕ ПОЛОЖЕНИЯ О САМОСТОЯТЕЛЬНОЙ РАБОТЕ	4
2.	АУДИТОРНАЯ САМОСТОЯТЕЛЬНАЯ РАБОТА	4
3.	ВНЕАУДИТОРНАЯ САМОСТОЯТЕЛЬНАЯ РАБОТА	5
4.	РЕКОМЕНДАЦИИ ПО ОТДЕЛЬНЫМ ТЕМАМ ДИСЦИПЛИНЫ	6
5.	РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА	15

Форма 3 из 16

1. ОБЩИЕ ПОЛОЖЕНИЯ О САМОСТОЯТЕЛЬНОЙ РАБОТЕ

Самостоятельная работа определяется как индивидуальная или коллективная учебная деятельность, осуществляемая без непосредственного руководства преподавателя, но по его заданиям и под его контролем.

Самостоятельная работа является важной составной частью учебной работы обучающихся и имеет целью закрепление и углубление полученных знаний и навыков, а также формирование культуры умственного труда и самостоятельности в поиске и приобретении новых знаний.

Основными видами самостоятельной работы студентов являются: подготовка к занятиям, просмотр и прослушивание видео- и аудио лекций, осмысление учебной сообщаемой преподавателем, обобщение информации, ee И краткая запись. своевременная доработка конспектов лекций, подбор, изучение, конспектирование рекомендованной литературы, консультация с преподавателем по сложным, непонятным вопросам, подготовка и экзаменам и зачетам, выполнение написание рефератов, участие научной работе, В ознакомление с материалами периодической печати, поиск и анализ дополнительной информации по учебным дисциплинам.

Основными компонентами самостоятельной работы обучающихся являются:

- умение работать с литературой, нормативными правовыми актами и материалами правоприменительной практикой;
 - подготовка к текущим групповым занятиям;
 - подготовка к учебному контролю (текущий контроль, зачет, экзамен);
- выполнение письменных работ (курсовых, контрольных, практикумов, рефератов и т.п.) и заданий на самоподготовку;
 - выполнение итоговой работы (выпускной квалификационной работы).

Аудиторная самостоятельная работа выполняется на учебных занятиях под непосредственным руководством преподавателя и по его заданию.

Внеаудиторная самостоятельная работа выполняется по заданию преподавателя без его непосредственного участия.

Объем времени, отведенный на внеаудиторную самостоятельную работу, находит отражение в учебном плане и в программах учебных дисциплин с распределением по разделам или темам.

Самостоятельная работа предполагает самостоятельность мыслей и суждений обучающихся в процессе работы над предложенной проблематикой. Для самостоятельной работы рекомендуются учебные пособия, опубликованные лекционные курсы, хрестоматии, практикумы, справочники, методические пособия, а также монографическая литература, теоретические материалы, публикуемые в научных журналах.

Богатый материал для подготовки к практическим занятиям можно найти в статьях из журналов экономического профиля, имеющихся в библиотеке Университета, а также в научной электронной библиотеке elibrary.ru.

Преподаватель осуществляет управление самостоятельной работой обучающихся, регулирует ее объем на одно учебное занятие и осуществляет контроль ее выполнения.

2. АУДИТОРНАЯ САМОСТОЯТЕЛЬНАЯ РАБОТА

Аудиторная самостоятельная работа по дисциплине выполняется на учебных занятиях под непосредственным руководством преподавателя и по его заданию. Аудиторная самостоятельная работа выполняется на практическом занятии (семинаре),

Форма 4 из 16

где обучающиеся учатся рассуждать, дискутировать, находить истину, выдвигать и отстаивать свою точку зрения, опираясь на научные аргументы.

Подготовку к практическому занятию необходимо начинать заблаговременно, а в случае затруднений обращаться к преподавателю за консультациями, которые проводятся в соответствии с графиком учебных консультаций.

Основными видами аудиторной самостоятельной работы являются:

- ✓ выполнение лабораторных работ;
- ✓ работа с нормативными документами, справочной литературой и другими источниками информации, в том числе электронными;
- ✓ само и взаимопроверка выполненных заданий;
- ✓ решение проблемных и ситуационных задач.

Работа с нормативными документами, справочной литературой, другими источниками информации, в т.ч. электронными может реализовываться на семинарских и практических занятиях. Данные источники информации могут быть представлены на бумажном и/или электронном носителях, в том числе, в сети Internet. Преподаватель формулирует цель работы с данным источником информации, определяет время на проработку документа и форму отчетности.

Само и взаимопроверка выполненных заданий чаще используется на семинарском, практическом занятии и имеет своей целью приобретение таких навыков как наблюдение, анализ ответов сокурсников, сверка собственных результатов с эталонами.

Решение проблемных и ситуационных задач используется на лекционном, семинарском, практическом и других видах занятий. Проблемная/ситуационная задача должна иметь четкую формулировку, к ней должны быть поставлены вопросы, ответы на которые необходимо найти и обосновать.

3. ВНЕАУДИТОРНАЯ САМОСТОЯТЕЛЬНАЯ РАБОТА

Внеаудиторная самостоятельная работа выполняется по заданию преподавателя, но без его непосредственного участия.

Видами заданий для внеаудиторной самостоятельной работы могут быть

- *для овладения знаниями*: чтение текста (учебника, первоисточника, дополнительной литературы); составление плана текста; конспектирование текста; выписки из текста; работа со словарями и справочниками; ознакомление с нормативными документами; учебно-исследовательская работа; использование аудио- и видеозаписей, компьютерной техники и Интернет-ресурсов и др.;
- для закрепления и систематизации знаний: работа с конспектом лекции (обработка текста); повторная работа над учебным материалом (учебника, первоисточника, дополнительной литературы, аудио- и видеозаписей); составление плана и тезисов ответа; составление таблиц, глоссария для систематизации учебного материала; изучение нормативных материалов; справочников; ответы на контрольные вопросы; аналитическая обработка текста (аннотирование, рецензирование, реферирование и др.); подготовка сообщений к выступлению на семинаре, конференции; подготовка рефератов, докладов; составление библиографии, заданий в тестовой форме и др.;
- *для формирования умений*: решение задач и упражнений по образцу; решение вариативных задач и упражнений; составление схем; решение ситуационных профессиональных задач; подготовка к деловым и ролевым играм; проектирование и моделирование разных видов и компонентов профессиональной деятельности; подготовка презентаций, творческих проектов; подготовка курсовых и выпускных квалификационных

Форма 5 из 16

работ; проектирование и моделирование разных видов и компонентов профессиональной деятельности и др.

Для обеспечения внеаудиторной самостоятельной работы по дисциплине преподавателем разрабатывается комплект заданий для самостоятельной работы, который необходим для эффективного управления данным видом учебной деятельности обучающихся.

4. РЕКОМЕНДАЦИИ ПО ОТДЕЛЬНЫМ ТЕМАМ ДИСЦИПЛИНЫ

Раздел 1. Элементы линейной алгебры.

Подготовить ответы на вопросы:

- 1. Сформулируйте определение матрицы.
- 2. Перечислите виды матриц.
- 3. Сформулируйте правило сложения матриц.
- 4. Сформулируйте правило умножения матриц.
- 5. Дайте понятие определителя матрицы.
- 6. Сформулируйте свойства определителя.
- 7. Сформулируйте определение обратной матрицы.
- 8. Объясните правило нахождения обратной матрицы.

Задание для самостоятельной работы:

В рамках подготовки к семинару составить глоссарий терминов раздела 1.

Практическое задание:

Решите задачи:

1 вариант

1) Даны матрицы
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 4 & 1 \\ 1 & -4 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, C = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$
 и число $\alpha = 2$. Найти $A^TB + \alpha C$.

2) Найти произведение матриц A=
$$\begin{pmatrix} 1 & 2 \end{pmatrix}$$
, B= $\begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix}$

3) Решить систему
$$\begin{cases} x+3y-6z=12\\ 3x+2y+5z=-10 \text{ тремя способами:}\\ 2x+5y-3z=6 \end{cases}$$

- а) методом Крамера;
- б) методом Гаусса;
- в) матричным методом.

2 вариант

1) Даны матрицы
$$A = \begin{pmatrix} 2 & 1 & -3 \\ 0 & 4 & 1 \\ 5 & -3 & 2 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 2 \\ 7 \end{pmatrix}, C = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$
 и число $\alpha = 2$. Найти $A^TB + \alpha C$.

2) Найти произведение матриц A=(5 2), B =
$$\begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$$

Форма 6 из 16

- 3) Решить систему $\begin{cases} 5x y z = 0 \\ x + 2y + 3z = 14 \end{cases}$ тремя способами: 4x + 3y + 2z = 16
 - а) методом Крамера;
 - б) методом Гаусса;
 - в) матричным методом.

Тестовые задания по теме:

- 1. Матрица называется квадратной, если
- а) в первой строке ненулевые значения элементов
- б) элементы матрицы натуральные числа в квадрате
- в) число строк равно числу столбцов
- 2. Матрицы равны между собой, если
- а) число строк первой матрицы равно числу столбцов второй матрицы
- б) равны все соответсвующие элементы этих матриц
- в) матрицы имеют одинаковый размер
- 3. Матрица называется единичной, если
- а) все элементы, стоящие на главной диагонали, равны 1, остальные элементы равны нулю
- б) все элементы матрицы равны 1
- в) сумма элементов, стоящих на главной диагонали, равна 1.
- 4. Единичная матрица обозначается латинской буквой
- a) A
- б) Е
- в) M
- 5. Матрица называется нулевой, если
- а) все элементы матрицы равны нулю
- б) все элементы, стоящие на главной диагонали, равны нулю
- в) сумма элементов, стоящих на главной диагонали, равна 0
- 6. Операция сложения матриц допустима
- а) для матриц одинаковых размеров
- б) только для квадратных матриц
- в) для любых матриц
- 7. При сложении матриц
- а) элементы складываются в любом порядке
- б) складываются элементы, стоящие на главной диагонали
- в) складываются элементы, стоящие на соответствующих местах
- 8. Произведение двух матриц допустимо
- а) если длина строки первой матрицы равна высоте столбца второй матрицы
- б) только для матриц одинаковых размеров
- в) только для квадратных матриц
- 9. Матрицы А и В называются перестановочными, если

Форма 7 из 16

- a) $AB \neq BA$
- δ) AB = BA
- в) А можно умножить на В
- 10. Можно ли умножить квадратную матрицу на неквадратную?
- а) можно, если длина строки первой матрицы равна высоте столбца второй матрицы
- б) нельзя
- в) можно, только если одна из матриц нулевая
- 11. Если матрицы А и В можно складывать, следует ли из этого, что их можно умножать
- а) нет
- б) да
- в) да, только если матрицы квадратные
- 12. Могут ли совпадать матрицы А и А^т
- а) да
- б) нет
- в) да, только если матрицы квадратные
- 13. Определителем, соответствующим данной матрице, является
- а) матрица
- б) число
- в) диагональ матрицы
- 14.Определителем 2-го порядка называется число, получаемое следующим образом
- a) a11a22 + a12a21
- б) a11a12 a21a22
- B) a11a22 a12a21
- 15. При вычислении определителя 3-го порядка используется
- а) правило квадрата
- б) правило многоточия
- в) правило треугольника
- 16. Может ли определитель 2-го порядка принимать значение большее, чем определитель 5-го порядка?
- а) да, только если в одной из строк есть отрицательные числа
- б) нет
- в) да
- 17. Решение систем линейных уравнений методом Гаусса заключается
- а) в последовательном исключении неизвестных
- б) в добавлении новых неизвестных
- в) в потере неизвестных

Раздел 2. Элементы аналитической геометрии.

Подготовить ответы на вопросы:

- 1. Сформулируйте определение вектора.
- 2. Как вычислить координаты вектора?
- 3. По какой формуле вычисляется длина вектора?
- 4. Сформулируйте определение скалярного произведения двух векторов.

Форма 8 из 16

- 5. Запишите уравнение эллипса.
- 6. Запишите уравнение гиперболы.
- 7. Запишите уравнение параболы.
- 8. Сформулируйте условие параллельности прямых.

Задание для самостоятельной работы:

1. В рамках подготовки к семинару составить глоссарий терминов раздела 2.

Практическое задание:

Решите задачи:

1 вариант

- 1) Найти угол между векторами \ddot{a} и \ddot{b} , если $\ddot{a} = \ddot{i} + 2\ddot{j} + 3\ddot{k}$,
- 2) Даны вершины треугольника A(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины C.
- 3) Найти уравнение гиперболы, вершины и фокусы которой находятся в соответствующих вершинах и фокусах эллипса $\frac{x^2}{8} + \frac{y^2}{5} = 1$. Схематично построить кривую.
- 4) При каком m векторы a = mi + j и b = 3i 3j 4k перпендикулярны.

2 вариант

- 1) Найти угол между векторами $\stackrel{b}{a}$ и $\stackrel{b}{b}$, если $\stackrel{b}{a} = 3i + 4j + 5k$, $\stackrel{b}{b} = 4i + 5j 3k$,
- 2) Даны вершины треугольника A(0; 1), B(6; 5), C(12; -1). Найти уравнение медианы, проведенной из вершины C.
- 3) Дано равнение кривой в декартовой прямоугольной системе координат $\frac{(x+5)^2}{16} \frac{y^2}{9} = 1$, найти фокусы и эксцентриситет. Схематично построить кривую.

Прямая отсекает на координатных осях равные положительные отрезки. Составить уравнение прямой, если площадь треугольника, образованного этими отрезками равна 8 cm^2 .

Раздел 3. Основы математического анализа. Предел функции.

Подготовить ответы на вопросы:

- 1. Сформулируйте определение предела функции.
- 2. Назовите свойства предела функции.
- 3. Сформулируйте определение односторонних пределов.
- 4. Запишите формулу предела суммы двух функций.
- 5. Запишите формулу предела произведения двух функций.
- 6. Запишите формулу предела частного двух функций.
- 7. Запишите формулу 1-го замечательного предела.

Задание для самостоятельной работы:

Форма 9 из 16

В рамках подготовки к семинару составить глоссарий терминов раздела 3.

Практическое задание:

Решите задачи:

1. Вычислить предел функции:
$$\lim_{x\to 3} \frac{x^2 - x - 6}{x^2 - 5x + 6}$$

2. Вычислить предел функции:
$$\lim_{x\to -2} \frac{x^2+x-2}{x^2+7x+10}$$

$$\lim_{x \to \infty} \frac{x - 2x^2 + 5x^4}{2 + 3x^2 + x^4}$$

3. Вычислить предел функции

3. Вычислить предел функции
$$\lim_{x \to 2} \frac{x^3 - 3x - 2}{x - 2}$$
4. Вычислить предел функции
$$\lim_{x \to 2} x^3 - x^2 + x - 2$$

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x^3 + x - 2}$$

5. Вычислить предел функции

$$\lim_{x \to \infty} \frac{3x^2 - 4x + 2}{6x^2 + 5x + 1}$$

6. Вычислить предел функции

7. Вычислить предел функции
$$\lim_{x \to 4} \frac{x^2 + 3x - 28}{x^3 - 64}$$

Тестовые задания по теме:

- 1. Числовая последовательность называется возрастающей, если
- a) каждый последующий член последовательности меньше предыдущего
- б) каждый последующий член последовательности больше предыдущего
- в) каждый последующий член последовательности равен предыдущему
- 2. Числовая последовательность называется постоянной, если
- a) члены последовательности неизвестны
- б) члены последовательности постоянно меняются
- все члены последовательности равны одному и тому же числу в)
- 3. Последовательность называется ограниченной сверху, если
- a) существует такое число М, что все члены последовательности больше М
- б) существует такое число М, что все члены последовательности меньше М
- существует такое число М, что все члены последовательности равны М в)
- 4. Сходящаяся последовательность имеет
- несколько пределов a)
- б) только один предел
- в) не имеет предела
- 5. Расходящаяся последовательность
- имеет только один предел a)

- б) не имеет предела
- в) имеет несколько пределов
- 6. Окрестностью точки х₀ называется
- а) треугольник, вершиной которого является точка x_0
- б) числовой интервал, содержащий точку x_0
- в) уравнение прямой, содержащей точку x_0
- 7. Бесконечность (∞) это
- а) символическое обозначение процесса неограниченного удаления точек числовой оси от начала координат
- б) очень большое число
- в) много чисел
- 8. Формула первого замечательного предела имеет вид

a)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\delta) \quad \lim_{x \to 0} \frac{\sin x}{x} = 0$$

$$B) \lim_{x\to 0} \frac{\sin x}{x} = 2$$

- 9. Предел функции $\lim_{x\to 0} \frac{\sin 3x}{x}$ равен
- a) 6
- $6) \qquad \frac{1}{3}$
- B) 3
- 10. Предел функции $\lim_{x\to 1} (3x^2 2x + 7)$ равен
- a) 8
- б)5
- B) 0

Раздел 3. Основы математического анализа. Дифференцирование и интегрирование.

Подготовить ответы на вопросы:

1. Сформулировать правила дифференцирования и записать производные основных элементарных функций:

1°.
$$c' =$$

$$8^{\circ}$$
. $(tgx)' =$

$$2^{\circ}$$
. $(x^{\alpha})' =$

$$9^{\circ}$$
. $(ctgx)' =$

B частности,
$$x' =$$

$$10^{\circ}. \qquad (\arcsin x)' =$$

$$(x^2)' =$$

11°.
$$(\arccos x)' =$$

$$(x^3)' =$$

$$12^{\circ}$$
. $(arctgx)' =$

$$(\sqrt{x})' = \left(\frac{1}{x}\right)' =$$

$$(arcctgx)' = 13^{\circ}.$$

ПРАВИЛА ДИФФЕРЕНЦИРОВАНИЯ

$$14^{\circ}. \qquad (u+v)' =$$

(u-v)' = (uv)' =

(cu)' =

$$3^{\circ}. \qquad (kx+b)' =$$

$$4^{\circ}$$
. $(a^{x})' =$

B частности, $(e^x)' =$

$$5^{\circ}. \qquad (\log_a x)' =$$

B частности,
$$(\ln x)' = (\lg x)' =$$

15°.

16°.

17°.

$$18^{\circ}. \qquad \left(\frac{u}{v}\right)' =$$

B частности,
$$\left(\frac{1}{\nu}\right)' =$$

$$6^{\circ}$$
. $(\sin x)' =$

$$7^{\circ}$$
. $(\cos x)' =$

ПРОИЗВОДНАЯ СЛОЖНОЙ ФУНКЦИИ

19°.
$$f(\varphi(x))' =$$

2. Записать табличные интегралы:

1.
$$\int 0 dx =$$

$$2. \qquad \int x^{\alpha} dx =$$

B частности, $\int dx =$

$$3. \qquad \int \frac{dx}{x} =$$

4.
$$\int a^x dx =$$

B частности, $\int e^x dx =$

$$\int \cos x dx =$$

6.
$$\int \sin x dx =$$

$$7. \qquad \int \frac{dx}{\cos^2 x} =$$

$$8. \qquad \int \frac{dx}{\sin^2 x} =$$

$$9. \qquad \int \frac{dx}{\sqrt{a^2 - x^2}} =$$

B частности,
$$\int \frac{dx}{\sqrt{1-x^2}} =$$

$$10. \qquad \int \frac{dx}{a^2 + x^2} =$$

B частности,
$$\int \frac{dx}{1+x^2} =$$

Задание для самостоятельной работы:

- 1. В рамках подготовки к семинару составить обзор научно-исследовательской литературы по данной теме (ресурсы библиотеки, Интернет-ресурс). По ряду статей (не менее 5) представить письменные данные:
 - ✓ автор, название статьи, название журнала, номер, год издания;
 - ✓ краткая аннотация статьи (0,5-1 стр.);
 - ✓ обоснование выбора конкретной статьи для использования в семинаре для обсуждении (0,5 стр).

Практическое задание:

Решить задачи

1 вариант

1) Найти производную функций:

a)
$$y = x \cos x \sin x + \frac{1}{2} \cos^2 x$$
; 6) $y = \frac{x^2 e^{x^2}}{x^2 + 1}$.

- 2) Методами дифференциального исчисления исследовать функцию $y = \frac{9x}{9-x^2}$ и построить график;
- 3) Вычислить неопределённые интегралы:

a)
$$\int (2e^x - \sqrt[3]{x^2}) dx$$
; 6) $\int \frac{dx}{(6x+7)^3}$

4) Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями в декартовых координатах: y = x + 2, y = 2 - x, y = 0

2 вариант

1) Найти производную функций:

- 2) Методами дифференциального исчисления исследовать функцию $y = \frac{x^2 2x + 3}{x + 2}$ и построить график;
- 3) Вычислить неопределённые интегралы:

a)
$$\int (3\cos x + 2\sqrt[5]{x^3}) dx$$
 6) $\int \frac{dx}{(8-13x)^2}$

4) Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями в декартовых координатах: y = 2x - 4, y = 2 - x, x = 0

Тестовые задания по теме:

- 1. Функция, имеющая производную, называется
- а) интегрируемой
- б) дифференцируемой
- в) кривой
- 2. Формула производной суммы двух функций имеет вид
 - a) (u+v)' = u'-v'
 - 6) (u+v)'=u'+v'
 - $\mathrm{B)} \quad \left(u+v\right)' = u'u + v'v$
- 3. Формула производной произведения двух функций имеет вид
 - a) (uv)' = u'v + uv'
 - (uv)' = u' + v'
 - $\mathrm{B)} \quad \left(uv\right)' = u'u + v'v$
- 4. Производная функции $y = (x^4 3x^3 + 2x 1)$ равна
 - a) $4x^3 9x^2 + 2$
 - 6) $4x 3x^2 + 2$
 - B) $x^3 3x + x$
- 5. Функция y=f(x) называется четной, если
- а) значение функции всегда можно разделить на 2
- δ) выполняется равенство f(-x)=f(x)
- в) значение функции можно посчитать
- 6. Функция y=f(x) возрастает на интервале (a;в), если
- а) на данном интервале
- б) на данном интервале
- в) на данном интервале
- 7. Вторая производная функции y=3sin2x равна
- a) 6cos2x
- б) -12sin2x
- в) -3cos2x

Раздел 4. История развития математики

Задание для самостоятельной работы:

Подготовить доклад на одну из предложенных тем.

- 1. Жизненный путь и научные открытия Архимеда.
- 2. Жизненный путь и научные открытия Евклида (Эвклида).
- 3. Жизненный путь и научные открытия Пифагора.

- 4. Жизненный путь и научные открытия Леонарда Эйлера.
- 5. Жизненный путь и научные открытия Рене Декарта.
- 6. Жизненный путь и научные открытия Пьера Ферма.
- 7. Жизненный путь и научные открытия Карла Фридриха Гаусса.
- 8. Жизненный путь и научные открытия Блеза Паскаля.
- 9. Жизненный путь и научные открытия Готфрида Вильгельма Лейбница.
- 10. Жизненный путь и научные открытия Жозефа Луи Лагранжа.
- 11. Жизненный путь и научные открытия Михаила Васильевича Ломоносова.
- 12. Жизненный путь и научные открытия Софьи Ковалевской.
- 13. Жизненный путь и научные открытия Николая Ивановича Лобачевского.
- 14. Жизненный путь и научные открытия Александра Михайловича Ляпунова.
- 15. Жизненный путь и научные открытия Пафнутия Львовича Чебышева.
- 16. Жизненный путь и научные открытия Мстислава Келдыша.
- 17. Жизненный путь и научные открытия Александра Николаевича Колмогорова.
- 18. Жизненный путь и научные открытия Сергея Михайловича Никольского.
- 19. История Нобелевской премии. Почему Нобелевская премия не вручается за достижения в математике. Филдсовская премия.
- 20. Перспективные направления в современной математике.

Выбрать тему из приведенного списка, затем проанализировать литературу, относящуюся к теме.

Объем работы — 10 страниц основного текста. Текст должен быть отпечатан в формате Winword, шрифт — Times New Roman, размер шрифта — 12, интервал — 1,5.

К докладу прилагается презентация, выполненная в программе MS – Power Point. Работа заслушивается и обсуждается на семинарском занятии

5. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

а) Основные источники:

- 1. Математика : учебник для среднего профессионального образования / О. В. Татарников [и др.] ; под общей редакцией О. В. Татарникова. Москва : Издательство Юрайт, 2023. 450 с. (Профессиональное образование). ISBN 978-5-9916-6372-4. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/512206
- 2. Высшая математика: учебник и практикум для среднего профессионального образования / М. Б. Хрипунова [и др.]; под общей редакцией М. Б. Хрипуновой, И. И. Цыганок. Москва: Издательство Юрайт, 2023. 472 с. (Профессиональное образование). ISBN 978-5-534-01497-6. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/513645

Форма 15 из 16

3. *Кремер, Н. Ш.* Математика для колледжей: учебное пособие для среднего профессионального образования / Н. Ш. Кремер, О. Г. Константинова, М. Н. Фридман; под редакцией Н. Ш. Кремера. — 11-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2023. — 362 с. — (Профессиональное образование). — ISBN 978-5-534-15601-0. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/511283

б) Дополнительные источники:

- 1. Богомолов, Н. В. Математика: учебник для среднего профессионального образования / Н. В. Богомолов, П. И. Самойленко. 5-е изд., перераб. и доп. Москва: Издательство Юрайт, 2023. 401 с. (Профессиональное образование). ISBN 978-5-534-07878-7. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/511565
- 2. *Гусев*, *В. А.* Геометрия: учебное пособие для среднего профессионального образования / В. А. Гусев, И. Б. Кожухов, А. А. Прокофьев. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2023. 280 с. (Профессиональное образование). ISBN 978-5-534-08897-7. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/517007
- 3. Математика и информатика: учебник и практикум для среднего профессионального образования / Т. М. Беляева [и др.]; под редакцией В. Д. Элькина. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2023. 402 с. (Профессиональное образование). ISBN 978-5-534-10683-1. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/512073
- 4. *Шипачев, В. С.* Математика: учебник и практикум для среднего профессионального образования / В. С. Шипачев; под редакцией А. Н. Тихонова. 8-е изд., перераб. и доп. Москва: Издательство Юрайт, 2023. 447 с. (Профессиональное образование). ISBN 978-5-534-13405-6. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/511549
- 5. Седых, И. Ю. Математика: учебник и практикум для среднего профессионального образования / И. Ю. Седых, Ю. Б. Гребенщиков, А. Ю. Шевелев. Москва: Издательство Юрайт, 2023. 443 с. (Профессиональное образование). ISBN 978-5-9916-5914-7. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/511991

Форма 16 из 16